Российские ученые создали полимеры для трехмерной печати сверхпрочных узлов роботов, беспилотников, экзоскелетов, протезов и даже космических скафандров. О том, как создавались новые виды пластика, способные в будущем заменить металл в самолето- и ракетостроении, рассказала в интервью РИА Новости руководитель лаборатории прогрессивных полимеров, созданной Фондом перспективных исследований и Минобрнауки в Кабардино-Балкарском государственном университете имени Х. М. Бербекова, доктор химических наук Светлана Хаширова.
— Расскажите, пожалуйста, о том, что такое суперконструкционные полимеры, в чем их уникальность?
Российские ученые работают над 3D-принтером для изготовления роботов— Все синтетические полимеры, которые сегодня производятся, делятся на реактопласты и термопласты. Основное отличие первых от вторых заключается в том, что из реактопластов можно получить изделие только один раз, термопласты же можно многократно перерабатывать. Так вот, если все известные сегодня термопласты расположить в виде пирамиды, то на ее верхушке будут так называемые суперконструкционные полимеры. Они обладают высокими эксплуатационными свойствами: выдерживают температуру до 500 градусов по Цельсию и выше, морозостойки, их можно применять в Арктике, устойчивы к радиации, можно использовать в космосе, а также обладают высокой прочностью. По многим характеристикам такие полимеры превосходят металлы, при этом их вес на 50-70% меньше.— В 2014 году Фонд перспективных исследований поставил перед нами сложную задачу: нужно было создать полностью отечественные суперконструкционные полимеры для трехмерной печати и технологию их производства. Ввиду важности решаемой задачи к созданию лаборатории подключилось министерство образования и науки России, которое профинансировало приобретение необходимого современного оборудования для реализации проекта.
Нужно отметить, что суперконструкционные полимерные материалы, специально разработанные для 3D-печати, отличаются от материалов, созданных для традиционных способов переработки. И, к сожалению, сегодня в России практически нет соответствующего научно-технического задела в этой области.
Преимущество же нашего подхода состоит именно в том, что мы сразу разрабатывали полимеры с учетом технологических особенностей 3D-печати, а не адаптировали существующие материалы, что позволило добиться характеристик напечатанных образцов на уровне литьевых. При этом созданные материалы могут прекрасно применяться и в традиционных технологиях переработки. Кстати, полимерные материалы, ориентированные на традиционные способы производства, такие как литье, далеко не всегда подойдут для 3D-печати.
Несмотря на всю сложность и объемность поставленной задачи, коллектив лаборатории с ней справился. Нам удалось очень глубоко погрузиться в вопросы полимерного материаловедения именно для 3D-печати, причем в такой сложной области, как высокопрочные высокотемпературные полимеры, и сегодня можно с уверенностью говорить о том, что удалось совершить прорыв и разработать собственный высокотехнологичный процесс получения новых полимеров, которые по большинству своих характеристик превосходят зарубежные аналоги.
Разработанная технология обладает рядом ключевых достоинств: сокращение стадий производства, высокий выход годного продукта, исключительно высокая чистота полимера и малооперационность. Это позволит значительно снизить затраты на производство, сделав новые материалы доступными для широкого внедрения.
Лаборатория прогрессивных полимеров Кабардино-Балкарского государственного университета им. Х. М. Бербекова
— В каких областях могут применяться материалы, созданные в возглавляемой вами лаборатории?
— Важно отметить, что созданные материалы можно использовать как для изготовления деталей литьем, так и для 3D-печати. Это значительно расширяет область их применения.
Печать деталей из суперконструкционных полимеров, в первую очередь, незаменима там, где требуется облегчить конструкцию, снизить общее количество узлов и соединений за счет более сложных форм, которые традиционными способами изготовить или невозможно, или очень трудоемко.
Такие материалы химически, тепло- огне- и морозостойкие. Могут эксплуатироваться в экстремальных условиях, например, сохранять прочностные характеристики при очень низких температурах, что делает возможным их использование при создании техники для работы в условиях Арктики. Они могут применяться и в условиях высоких температур и радиационного воздействия. Поэтому сфера применения новых материалов достаточно широка — это авиационная и космическая промышленность, машиностроение, нефтегазовая отрасль и многое другое.
Доля применения конструкционных полимеров в этих отраслях в России сейчас гораздо ниже, чем у зарубежных производителей аналогичной продукции. Мировой опыт замены металлов показывает необходимость применения суперконструкционных полимеров для увеличения эффективности производства, повышения качества изделий и сокращения затрат. И уже сейчас есть заинтересованность со стороны ряда российских компаний во внедрении разработанных материалов и технологий.
— В рамках проекта разрабатывается не только технология получения суперконструкционных полимеров, но и создается оборудование для 3D-печати. Почему не устраивает существующее оборудование, ведь предложений по продаже 3D-принтеров различного назначения можно встретить достаточно много?
— В связи с тем, что разработанные полимеры являются высокотермостойкими, для работы с ними необходимо профессиональное оборудование, которое могло бы обеспечить требуемые тепловые режимы, необходимую точность нанесения полимерного порошка и много других параметров. К сожалению, российские 3D-принтеры подобного уровня отсутствуют, а все принтеры зарубежного производства ориентированы на использование собственных материалов и ограничивают пользователя в изменении параметров и возможности экспериментировать с технологическими режимами 3D-печати.
В связи с этим в рамках проекта мы совместно с соисполнителями разрабатываем первый российский 3D-принтер для послойного лазерного сплавления суперконструкционных полимеров, позволяющий значительно расширить возможности управления процессом 3D-печати и печатать изделия из порошков суперконструкционных полимеров и материалов на их основе. Отмечу, что наша лаборатория разработала не только сами полимеры, но и композиционные материалы на базе этих полимеров.
Печать композитами — это отдельная сложная тема: нужно подбирать специальные наполнители, управлять скоростью кристаллизации полимеров, от которой сильно зависит поведение материала во время печати и формирования изделия, регулировать текучесть, чтобы снизить пористость изделия и так далее. Однако результат стоит затраченных усилий, так как за счет применения композиционных материалов можно значительно повысить характеристики готовых изделий.
— Как формировался коллектив вашей лаборатории, какие специалисты вошли в команду?
— С 60-х годов прошлого века у нас функционирует одна из сильнейших отечественных школ материаловедения — полимерная школа профессора Абдулаха Касбулатовича Микитаева, который, к огромному сожалению, на прошлой неделе ушел из жизни. Все сотрудники нашей лаборатории являются выпускниками химического факультета Кабардино-Балкарского государственного университета имени Х. М. Бербекова, большинство из них имеют ученую степень — при том, что средний возраст сотрудников лаборатории составляет 28 лет.
Лаборатория прогрессивных полимеров Кабардино-Балкарского государственного университета им. Х. М. Бербекова
— Расскажите, пожалуйста, о самых интересных вызовах в работе над проектом.
— Суперконструкционные полимеры во всем мире производятся в малых количествах. Во многом это связано с их высокой стоимостью, обусловленной сложной технологией получения. Рецептуры и технологии производства подобных полимеров везде являются предметом коммерческой тайны.
Перед нами стояла задача не только разработать собственный высокотехнологичный процесс получения новых суперконструкционных полимеров для 3D-печати, но и создать рецептуры материалов, обладающих одновременно высокой жесткостью и пластичностью. Зачастую повышение жесткости материала сопровождается снижением пластичности, и достичь сочетания в одном материале этих трудно совместимых свойств задача достаточно сложная. Однако поставленную задачу нужно было решать, и в итоге мы смогли получить материалы, которые одновременно обладают повышенной прочностью, жесткостью с сохранением пластичности.
Работа над проектом позволила нашему коллективу получить новые компетенции: решая крайне сложные задачи, мы постоянно раздвигали границы того, что казалось нам возможным, поэтому сейчас можем с уверенностью заявить, что готовы решать задачи любой сложности в области полимерного материаловедения.
ria.ru
В одной из прошлых публикаций мы писали о том, как российские ученые разрабатывают 3D-принтер и суперконструкционные материалы для изготовления сверхпрочных роботов. Мы решили побольше узнать о перспективном исследовании и обратились непосредственно к ученым, занимающихся данным проектом. На наши вопросы согласилась ответить Светлана Хаширова, доктор химических наук, заведующая кафедрой органической химии и высокомолекулярных соединений Кабардино-Балкарского государственного университета.
3Dpulse.ru: Добрый день, Светлана Юрьевна. Расскажите, что представляют собой суперконструкционные материалы и как их можно использовать в 3D-печати?
Светлана Хаширова: Здравствуйте. Сейчас на рынке 3D-печати наиболее распространены полимерные материалы, которые предназначены в основном для печати изделий бытового назначения. Но в технике стремительно растут скорости и давление — наша авиация давно оставила позади звуковой барьер. Одновременно повышаются температуры, с которыми имеет дело человек. Следовательно, нужно быстрее создавать материалы для получения высокопрочных и ответственных изделий, которые могли бы надежно работать в течение продолжительного времени при высоких температурах. И здесь незаменимыми становятся суперконструкционные полимеры, которые легче на 70%, чем сталь, на 50%, чем титан, на 40 %, чем алюминий. При этом они не уступают металлам по прочности и превосходят их по износостойкости и устойчивости к коррозии (могут работать в жестких условиях эксплуатации, агрессивных сред даже при повышенных температурах). Кроме этого такие материалы радиационно-стойкие (могут применяться в космосе), морозостойкие (подходят для освоения Арктики) практически не горят, а также биоинертны, поэтому будут иметь спрос и в медицине. С помощь 3D-печати из них можно изготовить протезы, созданные с учетом особенностей конкретного человека. Они походят для 3D-печати беспилотных летательных аппаратов, экзоскелетов, узлов машин и механизмов, сложных деталей робототехнических устройств или элементов космического скафандра.
В настоящее время в стране отсутствует производство суперконструкционных полимеров, а зарубежные технологии получения таких материалов являются коммерческой тайной, лицензии на них не продаются.
3Dpulse.ru: Как удалось добиться таких потрясающих физических свойств?
Светлана Хаширова: Усилия российских ученых и технологов в настоящее время в основном сосредоточены на освоении аддитивных технологий, использующих металлические порошки. При этом в мире для 3D-печати применяют всего 1,4 % металлических порошков от общего объема используемых материалов. В то время как термопластов более 40 %. При этом полимерные материалы специально для 3D-печати в настоящее время в нашей стране не производятся.
В рамках совместного проекта Фонда перспективных исследований и Министерства образования и науки РФ нам необходимо было решить ряд сложнейших задач в этой области, разработать технологию получения суперконструкционных полимеров с импортоопережающими свойствами, адаптировать к аддитивным технологиям.
Наша лаборатория занимается созданием новых полимеров, композитов и нанокомпозитов с заданным комплексом свойств и имеет большой опыт решения научно-технических задач в этой области. Разработки высокотермостойких термопластов были начаты в нашем университете еще в 60-х годах прошлого века под руководством профессора А.К.Микитаева и приостановлены в кризисные 90-е годы. Имеющийся научно-технический задел позволил нашему молодому коллективу (средний возраст участников проекта составляет менее 30 лет) возобновить работы по созданию суперконструкционных полимеров для нового спектра перспективных применений. Молодость и энтузиазм сотрудников помогли сделать значительный рывок в решении этой сложной и трудоемкой задачи. В ходе проекта, выполняемого в рамках совместного финансирования Фонда перспективных исследований и Минобрнауки России, в течение двух лет мы разработали уникальную технологию, которая позволяет получать суперконструкционные полимеры с высокими прочностными и термическими характеристиками, а также создавать из них изделия методами 3D-печати, превышающие зарубежные аналоги.
3Dpulse.ru: В чем проявляется заявленная экономичность материалов?
Светлана Хаширова: В упрощении технологии получения и использовании более доступного сырья.
3Dpulse.ru: С помощью каких методов можно будет печатать данными материалами?
Светлана Хаширова: С помощью метода FDM и SLS.
3Dpulse.ru: Расскажите о 3D-принтере, который разрабатывается в стенах университета. Почему Вы решили создать свое устройство, а не адаптировать уже имеющиеся зарубежные аналоги?
Светлана Хаширова: Принтеры зарубежного производства работают со строго фиксированным набором иностранных материалов и используют закрытые программные коды. При этом в большинстве случаев использовать другой материал на этих машинах нельзя — их снимут с гарантии.
В связи с тем, что разработанные полимеры являются высокотермостойкими, обычные FDM-принтеры для них не подходят.
В рамках проекта совместно с соисполнителями разрабатывается 3D-принтер для послойного лазерного сплавления суперконструкционных полимеров, позволяющий значительно расширить возможности управления процессом 3D-печати суперконструкционных полимеров. Опытный образец будет готов в конце 2017 года.
Светлана Хаширова: Высокоэффективные технологии создания суперконструкционных полимеров для 3D-печати мы занимались самостоятельно, а принтер разрабатываем совместно с соисполнителем.
3Dpulse.ru: Насколько велико практическое значение подобных разработок для промышленности ? Где могут применяться подобные материалы?
Светлана Хаширова: Разработанные суперконструкционные полимеры могут быть востребованы при изготовлении конкурентных образцов ракетно-космической, судостроительной, оборонной техники, автомобилестроения. Замена традиционных материалов (различных реактопластов, композиционных материалов, цветных металлов) на более передовые суперконструкционные полимеры позволит существенно снизить вес деталей, эксплуатирующихся при повышенных механических нагрузках, высоком температурном и радиационном воздействии. В то же время повысится долговечность, надежность, безопасность узлов, что даст возможность проектировать новые виды гражданской и специальной техники с уникальными тактико-техническими характеристиками. Адаптированность материалов к переработке методом 3D-печати позволит дополнительно снизить вес изделий за счет конструктивных возможностей 3D-технологии. Новые разработки повысить мобильность, оперативность и эффективность большинства стратегических направлений промышленности: робототехники, индустрии вооружений, авиакосмической техники, энергомашиностроения, автомобилестроения и т.д. Также интересно их применение в медицине.
3Dpulse.ru: На какой стадии находится данное исследование? Когда можно будет увидеть готовые изделия?
Светлана Хаширова: На стадии завершения НИОКР, имеются экспериментальные образцы полимеров и функциональные изделия, изготовленные из них методом 3D печати: это узлы и детали робота для эксплуатации в экстремальных условиях, детали беспилотных летательных аппаратов, медицинские имплантаты и др.
3Dpulse.ru: Российские компании уже проявили интерес к данной разработке?
Светлана Хаширова: Да, ведутся переговоры с потенциальными потребителями результатов.
3Dpulse.ru: Большое спасибо за беседу. Желаем Вам успешного завершения испытаний этих уникальных материалов.
www.3dpulse.ru
Окончила в 1983г. Математический факультет КБГУ по специальности «Математика». Стажировка (1983 – 1984гг.) – Ростовский государственный университет, Механико-математический факультет, г. Ростов-на-Дону. Аспирантура (1984 – 1987 гг.) – Ростовский государственный университет, Механико-математический факультет, г. Ростов-на-Дону. С 1988 г. работает в КБГУ.
Ученое звание — профессор кафедры САКТУ
Ученая степень — доктор технических наук
Опыт работы в КБГУ:
Ассистент кафедры Вычислительной математики (1987-1988)
Ассистент кафедры Информатики и математического обеспечения автоматизированных систем (1988-1991)
Старший преподаватель кафедры Информатики и математического обеспечения автоматизированных систем (1991-1996)
Доцент кафедры Информатики и математического обеспечения автоматизированных систем (1996-2009)
Профессор кафедры Информатики и математического обеспечения автоматизированных систем (2010-2015)
Зав. кафедрой кафедры Системного анализа и компьютерных технологий управления (2015 – 2016)
Зав. кафедрой Информатики и технологий программирования (2016 – по н.в.)
Преподаваемые дисциплины:
Имитационное моделирование сложных систем; Современные проблемы информатики и вычислительной техники; Новые информационные технологии в науке и образовании; Программирование систем информационной безопасности; Алгоритмические основы информатики; Информационные технологии в экологии; Практикум на ЭВМ; Методы организации, планирования и обработки результатов научных исследований; Языки и методы программирования.
Повышение квалификации:
Обучение по программе «Реализация образовательных программ с применением современных образовательных технологий при электронном и дистанционном обучении» г. Нальчик, ФПК КБГУ; 2014
Высокопроизводительные вычисления, 3-ая научная межвузовская межрегиональная школа «Высокопроизводительные вычисления», 2015
Актуальные вопросы повышения качества высшего образования. Совершенствование качества сетевых и международных образовательных программ. ФПК Кабардино-Балкарского государственного университета им. Х.М. Бербекова, 2015
Противодействие коррупции, ФПК Кабардино-Балкарского государственного университета им. Х.М. Бербекова, 2015
Высокопроизводительные вычисления, 5-ая научная межвузовская межрегиональная школа «Высокопроизводительные вычисления в задачах экологии и моделирования климата», 2016
Общественная работа:
член Ученого совета КБГУ, член Ученого совета ИИЭиКТ, секретарь экспертного совета для отбора претендентов на получение грантов.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
kbsu.ru
author:иванов
Можно искать по нескольким полям одновременно:author:иванов title:исследование
исследование разработка
author:иванов title:разработка
оператор OR означает, что документ должен соответствовать одному из значений в группе:исследование OR разработка
author:иванов OR title:разработка
оператор NOT исключает документы, содержащие данный элемент:исследование NOT разработка
author:иванов NOT title:разработка
$исследование $развития
Для поиска префикса нужно поставить звездочку после запроса:исследование*
Для поиска фразы нужно заключить запрос в двойные кавычки:"исследование и разработка"
#исследование
author:(иванов OR петров) title:(исследование OR разработка)
бром~
При поиске будут найдены такие слова, как "бром", "ром", "пром" и т.д. Можно дополнительно указать максимальное количество возможных правок: 0, 1 или 2. Например:бром~1
По умолчанию допускается 2 правки."исследование разработка"~2
исследование^4 разработка
По умолчанию, уровень равен 1. Допустимые значения - положительное вещественное число.author:[Иванов TO Петров]
Будут возвращены результаты с автором, начиная от Иванова и заканчивая Петровым, Иванов и Петров будут включены в результат.author:{Иванов TO Петров}
Такой запрос вернёт результаты с автором, начиная от Иванова и заканчивая Петровым, но Иванов и Петров не будут включены в результат. Для того, чтобы включить значение в интервал, используйте квадратные скобки. Для исключения значения используйте фигурные скобки.search.rsl.ru
Состав Ученого совета КБГУ
План работы Ученого совета КБГУ на 2010-2011 учебный год
План работы Ученого совета КБГУ на 2011-2012 учебный год
План работы Ученого совета КБГУ на 2012-2013 учебный год
План работы Ученого совета КБГУ на 2013-2014 учебный год
План р
kbsu.ru
Предположительно, Хаширова Светлана Юрьевна является руководителем компаний, список которых вы видите ниже. Данная информация получена на основе анализа ЕГРЮЛ, может являться устаревшей и не нарушает 152-ФЗ "О персональных данных" согласно ст. 6 129-ФЗ "О Государственной регистрации юридических лиц и индивидуальных предпринимателей".
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ПОЛИГЛИН"
Регион: Кабардино-Балкарская республика
Адрес: 360000, г. НАЛЬЧИК, ул. МАТРОСОВА, д. 11
Виды деятельности:
Дата регистрации: 21 марта 2008 года
Инспекция ФНС России по г. НАЛЬЧИКУ КБР
КАБАРДИНО-БАЛКАРСКОЕ РЕГИОНАЛЬНОЕ ОТДЕЛЕНИЕ ОБЩЕРОССИЙСКОЙ ОБЩЕСТВЕННОЙ ОРГАНИЗАЦИИ "РОССИЙСКИЙ СОЮЗ МОЛОДЫХ УЧЕНЫХ"
Регион: Кабардино-Балкарская республика
Адрес: 360004, г. НАЛЬЧИК, ул. ЧЕРНЫШЕВСКОГО, 173, оф. 324
Деятельность прочих общественных объединений
Информация, размещенная на этой странице, может являться устаревшей или недостоверной. Данный сайт не гарантирует, что Хаширова Светлана Юрьевна является руководителем вышеуказанных фирм и организаций на текущий момент или когда-либо являлся (или являлась) их руководителем. Если по каким-либо причинам вы не хотите, чтобы информация, расположенная на этой странице, была доступной другим пользователям, пожалуйста, заполните заявку на удаление информации. |
nalchik.manageru.net
author:иванов
Можно искать по нескольким полям одновременно:author:иванов title:исследование
исследование разработка
author:иванов title:разработка
оператор OR означает, что документ должен соответствовать одному из значений в группе:исследование OR разработка
author:иванов OR title:разработка
оператор NOT исключает документы, содержащие данный элемент:исследование NOT разработка
author:иванов NOT title:разработка
$исследование $развития
Для поиска префикса нужно поставить звездочку после запроса:исследование*
Для поиска фразы нужно заключить запрос в двойные кавычки:"исследование и разработка"
#исследование
author:(иванов OR петров) title:(исследование OR разработка)
бром~
При поиске будут найдены такие слова, как "бром", "ром", "пром" и т.д. Можно дополнительно указать максимальное количество возможных правок: 0, 1 или 2. Например:бром~1
По умолчанию допускается 2 правки."исследование разработка"~2
исследование^4 разработка
По умолчанию, уровень равен 1. Допустимые значения - положительное вещественное число.author:[Иванов TO Петров]
Будут возвращены результаты с автором, начиная от Иванова и заканчивая Петровым, Иванов и Петров будут включены в результат.author:{Иванов TO Петров}
Такой запрос вернёт результаты с автором, начиная от Иванова и заканчивая Петровым, но Иванов и Петров не будут включены в результат. Для того, чтобы включить значение в интервал, используйте квадратные скобки. Для исключения значения используйте фигурные скобки.search.rsl.ru